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Review
The global marine pharmaceutical pipeline consists of
three Food and Drug Administration (FDA) approved
drugs, one EU registered drug, 13 natural products
(or derivatives thereof) in different phases of the clinical
pipeline and a large number of marine chemicals in the
preclinical pipeline. In the United States there are three
FDA approved marine-derived drugs, namely cytarabine
(Cytosar-UW, DepocytW), vidarabine (Vira-AW) and
ziconotide (PrialtW). The current clinical pipeline includes
13 marine-derived compounds that are either in Phase I,
Phase II or Phase III clinical trials. Several key Phase III
studies are ongoing and there are seven marine-derived
compounds now in Phase II trials. The preclinical
pipeline continues to supply several hundred novel
marine compounds every year and those continue to feed
the clinical pipeline with potentially valuable compounds.
From a global perspective the marine pharmaceutical
pipeline remains very active, and now has sufficient
momentum to deliver several additional compounds to
the marketplace in the near future; this review provides a
current view of the pipeline.

Introduction
Natural products have been the mainstay of disease
therapy for most of the history of man and are a major
component of the modern pharmaceuticals that we use to
treat human disease. The diversity of organisms in the
marine environment has inspired researchers for many
years to identify novel marine natural products that could
eventually be developed into therapeutics. By 1974, two
marine-derived natural products (cytarabine, Ara-C and
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vidarabine, Ara-A) were part of the pharmacopeia used to
treat human disease. It has taken over 30 years for another
marine-derived natural product to gain approval and
become part of the pharmacopeia. Since the approval in
2004 of ziconotide (Prialt1) for the treatment of moderate
to severe pain, Yondelis1 has received European approval
in 2007 for the treatment of soft tissue sarcoma, and in
2009 for ovarian carcinoma. Concomitantly numerous
other marine natural products or derivatives thereof are
indifferent phases of clinical trials. This review summarizes
the current pipeline of marine natural products that are
currently being evaluated in clinical trials and provides a
view into the promise that marine natural products pose to
improve the diversity of our pharmacopeia to treat a wide
variety of human disease.

Marine pharmaceuticals: FDA-approved drugs
There are currently three Food and Drug Administration
(FDA)-approved drugs in the US Pharmacopeia, namely
cytarabine (Cytosar-U1, Depocyt1), vidarabine (Vira-A1)
and ziconotide (Prialt1). Currently, trabectedin (Yonde-
lis1) has been approved by the European Agency for the
Evaluation of Medicinal Products (EMEA), and is complet-
ing key Phase III studies in the US for approval. The
next section will provide details of these compounds, their
discovery, mode of action and clinical application.

Approved marine-derived drugs

Cytarabine (arabinosyl cytosine or cytosine arabinoside,
Ara-C) is a synthetic pyrimidine nucleoside (Figure 1)
which was developed from spongothymidine, a nucleoside
originally isolated from the Caribbean sponge Tethya
crypta [1]. Cytarabine is an S-phase specific antimetabolite
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Figure 1. Marine natural products or derivatives thereof approved for use by the FDA or EMEA, their biological source, chemical structures and treatment usage. Cytarabine

and ziconotide are both FDA approved drugs in the US, vidarabine is FDA approved but no longer sold in the US. Cytarabine and vidarabine are derivatives of nucleosides

isolated from Tethya sp. Trabectedin, source organism Ecteinascidia turbinata, is approved by the EMEA for use in treating soft tissue sarcoma and ovarian carcinoma, and

is currently in Phase III trials in the US (PharmaMar Inc., Madrid, Spain). Photograph of the source organism for ziconotide, Conus sp., was created by Kerry Matz and kindly

provided by B. M. Olivera (University of Utah, Salt Lake City, UT, USA).
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cytotoxic agent, which when converted intracellularly to
cytosine arabinoside triphosphate competes with the
physiologic substrate deoxycitidine triphosphate, thus
resulting in both inhibition of DNA polymerase and
DNA synthesis. Cytarabine is currently available as either
conventional cytarabine (Cytosar-U1) or liposomal formu-
lations (Depocyt1) and received FDA approval in 1969. A
search in PubMed (December 2009) using the search term
cytarabine retrieved 13,008 publications in the peer-
reviewed literature, thus revealing the significant impact
cytarabine has had on preclinical and clinical cancer
pharmacology. FDA-labeled indications for conventional
cytarabine are treatment of acute lymphocytic leukemia,
acute myelocytic leukemia and blast crisis phase of chronic
myelogenous leukemia and meningeal leukemia [2,3].
Liposomal cytarabine (Depocyt1) is indicated for intrathe-
cal treatment of lymphomatous meningitis [4]. Cytarabine
(Cytosar-U1) and liposomal cytarabine (Depocyt1)
are marketed by Bedford Laboratories (http://www.
bedfordlabs.com/) and Enzon Pharmaceuticals (http://
www.enzon.com/), respectively.

Vidarabine (arabinofuranosyladenine or adenine arabi-
noside, Ara-A) is a synthetic purine nucleoside (Figure 1)
which was developed from spongouridine, a nucleoside
originally isolated from theCaribbean spongeTethya crypta
[1], and which is currently obtained from Streptomyces
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antibioticus. Adenine arabinoside is rapidly converted into
adeninearabinoside triphosphate,which inhibits viralDNA
polymerase and DNA synthesis of herpes, vaccinia and
varicella zoster viruses. A search in PubMed (December
2009) using the search term vidarabine retrieved 3640
publications in the peer-reviewed literature, thus highlight-
ing the importance of vidarabine on preclinical and clinical
antiviral pharmacology [5].Although itsmarketing status is
currently listed as discontinued by the FDA in the US
market, vidarabine (Vira-A1) received FDA approval in
1976. FDA-labeled indications for conventional vidarabine
(Vira-A ophthalmic ointment, 3%) are treatment of acute
keratoconjunctivitis, recurrent epithelial keratitis caused
by herpes simplex virus type 1 and 2, and superficial ker-
atitis causedbyherpes simplexvirus thathasnot responded
to topical idoxuridine (Herplex1) [6]. Vidarabine (Vira-A1),
previously marketed by King Pharmaceuticals (http://
www.kingpharm.com/) was discontinued in June of 2001
by an executive decision, possibly associated with the lower
therapeuticwindowofvidarabinerelative tonewerantiviral
compounds currently on the market.

Ziconotide (Prialt1) is the synthetic equivalent of a
naturally occurring 25-amino acid peptide, v-conotoxin
MVIIA (Figure 1), originally isolated from the venom of
the fish-hunting marine snail Conus magus [7]. Ziconotide
is a potent analgesic with a completely novel mechanism of
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Table 1. The odyssey of marine pharmaceuticals: a current pipeline perspective

Clinical status Compound name Trademark Marine

organismb
Chemical

class

Companya or

Institution

Disease area

Approved Cytarabine, Ara-C Cytosar-U1 Sponge Nucleoside Bedford, Enzon Cancer

Vidarabine, Ara-A Vira-A1 Sponge Nucleoside King Pharmaceuticals Antiviral

Ziconotide Prialt1 Cone snail Peptide Elan Corporation Pain

Trabectedin (ET-743) Yondelis1 Tunicate Alkaloid Pharmamar Cancer

(EU Registered only)

Phase III Eribulin Mesylate (E7389) NA Sponge Macrolide Eisai Inc. Cancer

Soblidotin (TZT 1027) NA Bacterium Peptide Aska Pharmaceuticals Cancer

Phase II DMXBA (GTS-21) NA Worm Alkaloid Comentis Cognition

Schizophrenia

Plinabulin (NPI-2358) NA Fungus Diketopiperazine Nereus Pharmaceuticals Cancer

Plitidepsin Aplidin1 Tunicate Depsipeptide Pharmamar Cancer

Elisidepsin Irvalec1 Mollusc Depsipeptide Pharmamar Cancer

PM1004 Zalypsis1 Nudibranch Alkaloid Pharmamar Cancer

Tasidotin, Synthadotin (ILX-651) NA Bacterium Peptide Genzyme Corporation Cancer

Pseudopterosins NA Soft coral Diterpene glycoside NA Wound healing

Phase I Bryostatin 1 NA Bryozoa Polyketide National Cancer Cancer

Institute

Hemiasterlin (E7974) NA Sponge Tripeptide Eisai Inc. Cancer

Marizomib (Salinosporamide A;

NPI-0052)

NA Bacterium Beta-lactone-gamma Nereus Pharmaceuticals Cancer

lactam
aBedford Laboratories: http://www.bedfordlabs.com/; Enzon Pharmaceuticals: http://www.enzon.com/; King Pharmaceuticals: http://www.kingpharm.com/; Elan Corporation:

http://www.elan.com/; Pharmamar: http://www.pharmamar.com/Default.aspx; Eisai Inc.: http://www.eisai.com/pipeline; Aska Pharmaceutical Co., Ltd.: http://www.aska-

pharma.co.jp; Comentis: http://www.athenagen.com/; Nereus Pharmaceuticals, Inc.: http://www.nereuspharm.com/; Genzyme Corporation: http://www.genzymeoncology.-

com/; NA: not applicable.
bThe marine pharmaceuticals pipeline consists of natural products, analogs or derivatives of compounds produced by this marine organism.
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action [8,9]. Various subtypes of voltage-gated calcium
channels have been identified in the nervous system.
Ziconotide reversibly blocks N-type calcium channels
located on primary nociceptive afferent nerves in the
superficial layers of the dorsal horn of the spinal cord.
Binding of ziconotide to presynaptic N-type calcium chan-
nels reduces the release of excitatory neurotransmitter
release from the primary afferent nerve terminals
[10,11]. Tolerance to drug effects is a major limiting factor
in opiate-based therapies; unlike opiates, ziconotide does
not produce tolerance [12]. A recent search in PubMed
(December 2009) using the search terms v-conotoxin
MVIIA, SNX-111, ziconotide or Prialt1 retrieved 261 pub-
lications in the peer-reviewed literature. Ziconotide does
not readily cross the blood–brain barrier and is therefore
delivered intrathecally via an implantable pump or
temporarily by an external microinfusion device
[11,13,14]. Ziconotide received FDA approval in December
2004 and is currently labeled for themanagement of severe
chronic pain in patients with cancer or AIDS [14,15] for
whom intrathecal (IT) therapy is warranted, and who are
intolerant of or refractory to other treatments, such as
systemic analgesics, adjunctive therapies or IT morphine.
Prialt1 is marketed by Elan Corporation, PLC (http://
www.elan.com/therapies/products/prialt.asp). Ziconotide
has also been approved by the EMEA [16].

Trabectedin (Yondelis1, ET-743) is a marine natural
product isolated from Ecteinascidia turbinata, a tunicate
found in the Caribbean and Mediterranean sea [17,18].
Trabectedin is a tetrahydroisoquinoline alkaloid (Figure 1)
and has been the first marine anticancer agent approved in
the European Union for patients with soft tissue sarcoma
(STS) [19] and patients with relapsed platinum-sensitive
ovarian cancer [20]. The chemical structure of trabectedin
is formed by three fused tetrahydroisoquinoline rings
through a 10-member lactone bridge and it is obtained
by chemical synthesis starting from safracin B cyano [21].
Although the mechanism of action is not fully elucidated, it
is well known that trabectedin binds by a covalent revers-
ible bond to the DNA minor groove [22] and interacts with
different binding proteins of the Nucleotide Excision
Repair (NER) system [23–25]. Thus, although other known
DNA-interacting agents require a deficient NER mechan-
ism to exert their activity, trabectedin needs a proficient
NER system to exert its cytotoxic activity. Cell cycle stu-
dies on tumor cells reveal that trabectedin arrests at G2/M
[26] and the apoptotic response is independent of p53.
Based on in vitro and in vivo results, trabectedin has been
developed and approved for STS and ovarian cancer. Cur-
rently, the product is being developed in Phase II trials in
breast, lung, prostate and pediatric cancer, and Phase III
trials for first-line therapy in STS. Regarding its safety
profile [27], the most frequent adverse event appears to be
neutropenia, which is reversible and transaminase
elevations which were also transient. No mucositis, alope-
cia, neurotoxicity, cardiotoxicity or cumulative toxicities
have been observed. Yondelis1 is being developed and
marketed by Pharmamar (http://www.pharmamar.com/
products.aspx).

Marine pharmaceuticals: clinical pipeline
As shown in Table 1, there are currently 13marine-derived
compounds in clinical development. The marine natural
products that are currently in Phase III trials are shown in
Figure 2 and include eribulin mesylate (E7389), soblidotin
(TZT-1027) and trabectedin (Yondelis1 for US approval),
and the following section will provide a more detailed
status update on eribulin mesylate and soblidotin.

Marine-derived compounds in Phase III trials

Eribulin mesylate (E7389) Halichondrin B (HB), a poly-
ether macrolide natural product originally isolated from
257
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Figure 2. Marine natural products or derivatives thereof in Phase III clinical trials, their biological source, chemical structures and treatment usage. Photograph of the E7389

source organism, Halichondria okadai, was reproduced with kind permission from Professor Yasunori Saito. Photograph of the source organism for TZT-1027, Symploca

sp., was courtesy of Raphael Ritson-Williams (Smithsonian Institute, Ft. Pierce, FL, USA). Photograph of the trabectedin source organism, Ecteinascidia turbinata, was

provided by PharmaMar, Inc., Madrid, Spain.
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marine sponges [28], shows potent anticancer activity in
preclinical animal models [29]. This activity is retained in
structurally simplified macrocyclic ketone analogs [30],
and the development candidate, eribulin mesylate
(Figure 2), retains the promising biological properties of
the natural product as well as favorable pharmaceutical
attributes including water solubility and chemical stability
[31]. Like the widely used taxane and vinca alkaloid che-
motherapeutics, eribulin and HB are tubulin-targeted
agents. However, eribulin and HB inhibit microtubule
dynamics through a uniquemechanism distinct from those
of the taxanes and vincas [32,33]. Against cancer cells,
eribulin exerts potent and irreversible antimitotic effects
leading to cell death by apoptosis [34]. In Phase I studies,
the maximum tolerated dose of eribulin mesylate given
intravenously was 1–2 mg/m2 depending upon the regi-
men; dose-limiting toxicities included neutropenia, febrile
neutropenia and fatigue [35,36]. Pharmacokinetics was
dose proportional with a terminal elimination half-life of
1.5–2 days. Phase II studies in patients with advanced
disease were completed in multiple tumor types. Against
breast cancer, the most studied tumor, the response rate
was 9.3–11.5% in heavily pretreated patients, with
responses occurring in patients refractory to taxanes or
other agents [37,38]. Common Grade 3/4 adverse events
reported as treatment-related were neutropenia, leukope-
nia and fatigue. Two Phase III studies are evaluating
eribulin versus capecitabine (NCT00337103) and eribulin
versus treatment of physician’s choice (NCT00388726).
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Preliminary results of the latter study show statistically
significant improvement in overall survival, the primary
endpoint, with a safety profile similar to Phase II results
(Eisai Inc., 2009). Eribulin mesylate (E7389) is being
developed by Eisai Inc. (http://www.eisai.com/pipeline.
asp?ID=173).

Soblidotin (Auristatin PE; TZT-1027) As with tasidotin
(see below), this compound is a synthetic derivative of the
dolastatinbackbone (Figure2), but this time fromdolastatin
10. Of interest is that the compound is also a vascular
disrupting agent (VDA), causing the vasculature inside
the tumor to collapse [39,40], in addition to its tubulin
inhibitory activity. TZT-1027 entered Phase I clinical trials
in Europe, Japan and the USA under the auspices of either
Teikoku Hormone, the originator or the licensee, Daiichi
Pharmaceuticals. It has had an interesting development
path, as after Phase I and Phase II clinical trials [41]
the licensing agreement with Daiichi was terminated,
and currently it is under the auspices of Aska Pharmaceu-
ticals (http://www.aska-pharma.co.jp/english/corporate/
work1.html), a recently formed company composed of
Teikoku Hormone and Grellan Pharmaceuticals that has
licensed the compound to Yakult for world-wide develop-
ment. However, in addition to the potential work by Yakult,
it is in three clinical trials (Phases I, II and III)withdifferent
companies using it as a ‘‘warhead’’ linked via modified
peptides to specific Seattle Genetics-sourced monoclonal
antibodies under the code numbers of SGN-75 (Phase I),
CR-011 (Phase II) and SGN-35 (Phase III) [41].

http://www.eisai.com/pipeline.asp?ID=173
http://www.eisai.com/pipeline.asp?ID=173
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Marine-derived compounds in Phase II trials

Themarine natural products that are currently in Phase II
trials are shown in Figures 3 and 4, and include DMXBA
(GTS-21), Plinabulin (NPI-2358), Plitidepsin (Aplidin1),
Elisidepsin (Irvalec1, PM02734), PM00104 (Zalypsis1),
ILX-651 (Tasidotin or Synthadotin) and the pseudopter-
osins. Their discovery, stage of development and clinical
effects are provided in more detail below.

DMXBA [3-(2,4-dimethoxybenzylidene)-anabaseine;
GTS-21], is a synthetic derivative of anabaseine, an alka-
loid present in several species of marine worms (Phylum
Nemertea). GTS-21 [42] (Figure 3) selectively stimulates
a7 nicotinic acetylcholine receptors [43], which are
expressed on CNS neurons and astrocytes, and on periph-
eral macrophages. A search in PubMed (December 2009)
revealed 124 peer-reviewed publications concerning ana-
baseine and its derivatives. DMXBA improves cognition
[44] and deficient sensory gating [45] in a variety of animal
models. DMXBA and other related arylidene–anabaseines
have also been demonstrated to be neuroprotective in vitro
as well as in vivo [46,47]. DMXBA counteracted the dele-
terious effects of beta-amyloid in primary cultures of
cerebral cortex neurons [48]. GTS-21 displays anti-inflam-
matory activities in animal models that are mediated
through its effects on macrophage a7 receptors [49,50].
It was recently found to improve survival of rats undergoing
experimental hemorrhage [51,52]. Phase I clinical trials
have demonstrated significant improvements in cognition
Figure 3. Marine natural products or derivatives thereof currently in Phase II clinical tr

synthetic derivative of the marine toxin anabaseine, an alkaloid present in several hop

Duncan, J.H. 1976 Hoplonemertine worms – a new source of pyridine neurotoxins. Exp

funebris), Aplidin1 (Aplidium albicans) and Irvalec1 (Elysia rufescens) were provided b
of healthy young males [53] and schizophrenics [54]. A
recent, academic Phase II trial with schizophrenics showed
improvements in cognitive function [55]. GTS-21 is
currently licensed by Comentis Inc. (http://www.comentis.
com/), a company developing treatments for Alzheimer’s
disease.

Plitidepsin (Aplidin1) is a marine natural depsipeptide
isolated from Aplidium albicans, a tunicate found in the
Mediterranean Sea that currently is obtained by total
synthesis (Figure 3). The macrocycle is made of six sub-
units: (S)-Leu, (S)-Pro, (1S,2R)-Thr, (S)-N(Me)-O(Me)-Tyr,
(3S,4R,5S)-isostatin and (2S,4S)-3-oxo-4-hydroxy-2,5-
dimethylhexanoic acid. The side chain consists of three
amino acids: (R)-N-Me-Leu linked to the Thr and piruvil-
(L)-Pro. Plitidepsin is an extremely potent inducer of
apoptosis with IC50 values in the low nanomolar range.
It depletes GSH and triggers Rac 1 activation, together
with MPK-1 downregulation, and sustained JNK acti-
vation [56,57]. Ongoing efforts seek to identify the primary
cellular target. Preclinical studies with different tumor
types, both in vitro and in vivo, were the basis for the
selection and design of the Phase I and Phase II programs.
Clinically, plitidepsin has demonstrated preliminary ef-
ficacy in two different Phase II clinical trials in relapsing
and refractory multiple myeloma and T cell lymphoma
[58]. The encouraging results gathered from these clinical
trials support further clinical research, particularly in
combination with other active agents. The main toxicity
ials, their biological source, chemical structures and treatment usage. GTS-21 is a

lonemertine worms including Amphiporus angulatus (Kem, W.R., Scott, K.N., and

erientia 32, 684–686). Photograph of the source organisms for Zalypsis1 (Joruna

y PharmaMar Inc. Madrid, Spain.
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Figure 4. Marine natural products or derivatives thereof in Phase II clinical trials, continued, their biological source, chemical structures and treatment usage. Plinabulin is a

fully synthetic analog of halimide, which was isolated from Aspergillus sp. CNC-139 (photograph courtesy of Paul Jensen, University of California, San Diego, CA, USA).

Photograph of the source organism for ILX-651, Symploca sp., was courtesy of Raphael Ritson-Williams (Smithsonian Institute, Ft. Pierce, FL, USA). Photograph of the

source organism for pseudopterosin A, Pseudopterogorgia elisabethae, was originally created by Valerie Paul, Smithsonian Institution, and provided by Drs. R.S. Jacobs

and R. Daniel Little (University of California at Santa Barbara, CA, USA).
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[59], found with most schedules, included muscular
toxicity, transient increase of transaminases (in many
cases related with liver metastasis and biochemical
abnormalities at baseline), fatigue, diarrhea and
cutaneous rash. Plitidepsin showed no severe bonemarrow
toxicity. Plitidepsin (Aplidin1) is being developed by
Pharmamar (http://www.pharmamar.com/products.aspx).

Elisidepsin (Irvalec1, PM02734) is a novel marine-
derived cyclic peptide belonging to the Kahalalide family
of compounds [60,61], currently under Phase II develop-
ment with preliminary evidence of antitumor activity and
a favorable therapeutic index [62] (Figure 3). It has potent
cytotoxic activity in vitro against a variety of human tumor
cell lines. Although little is known about its mechanism of
action, it has been reported that the compound induces
oncolytic rather than apoptotic cell death. Elisidepsin
(Irvalec1, PM02734) is being developed by Pharmamar
(http://www.pharmamar.com/products.aspx).

PM00104 (Zalypsis1) is a new DNA-binding alkaloid
related to jorumycin isolated from the skin and mucus of
the Pacific nudibranch Joruna funebris and renieramiycins
isolated from sponges and tunicates [63] (Figure 3). Zalyp-
sis binds to guanines in selected DNA triplets, DNA
adducts eventually give rise to double-strand breaks,
S-phase arrest and apoptosis in cancer cells. Cell lines
with mutant p53 or lacking p53 are more sensitive to
the treatment with Zalypsis than cell lines with wild type
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p53 [64]. Preclinical in vivo studies have demonstrated
strong antitumor activity in breast, prostate and renal
cancer and a moderate antitumor profile against colon
cancer. The main toxicity observed during Phase I trials
has been hematological disorders or liver enzyme
increases,mostly reversible. Currently Zalypsis is in Phase
II trials. Zalypsis1 is being developed by Pharmamar
(http://www.pharmamar.com/products.aspx).

Plinabulin (NPI-2358) is a fully synthetic analog of the
natural product known as halimide [65] from marine
Aspergillus sp. CNC-139 (cultured from the algaHalimeda
lacrimosa collected in the Bahamas) and phenylahistin
[66] (from Aspergillus ustus) (Figure 4). Plinabulin binds
at a boundary region between a- and b-tubulin near the
colchicine binding site and inhibits tubulin polymerization
[67,68], leading to destabilization of tumor vascular
endothelial architecture. Thus, plinabulin functions as a
VDA that induces selective collapse of established tumor
vascular, in addition to its direct apoptotic effect on tumor
cells [67]. In 2006, Nereus Pharmaceuticals initiated a
Phase I clinical trial in patients with solid tumors or
lymphomas. Disruption of tumor blood flow measured
using dynamic contrast-enhanced magnetic resonance
imaging indicated that plinabulin had a measurable effect
on tumor vasculature at doses �13.5 mg/m2 and was well
tolerated up to 30 mg/m2 [69]. These findings, together
with indications that VDAs can complement or synergize

http://www.pharmamar.com/products.aspx
http://www.pharmamar.com/products.aspx
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with chemotherapeutics and antiangiogenesis agents, led
to initiation of the ADVANCE (Assessment of Docetaxel
and Vascular Disruption in Non-Small Cell Lung Cancer)
Phase I/II trial in 2009. Plinabulin (NPI-2358) is being
developed by Nereus Pharmaceuticals, Inc. (http://
www.nereuspharm.com/) for cancer.

ILX-651 (Tasidotin or Synthadotin) ILX-651 is a syn-
thetic dolastatin-15 derivative and has had an interesting
development path as companies were bought and sold
(Figure 4). Although ILX-651 is known to be an inhibitor
of tubulin assembly, further refinements on its mechanism
of action have been reported recently [70,71] where the
‘‘active version’’ is probably the pentapeptide produced by
hydrolysis of the C-terminal amide bond. ILX-651 is orally
active and has advanced to Phase II trials in a variety of
cancers initially under Ilex Pharmaceuticals, and then
under GenzymeCorporation following the purchase of Ilex.
Those trials were completed [41] and recently (mid-2008)
(http://www.genzymeoncology.com/onc/research/onc_p_
tasidotinHydrochloride.asp) Genzyme reported that ILX-
651 was well tolerated but that efficacy was not such that
further single agent trials were warranted at that time.
Subsequently, ILX-651 has re-entered preclinical studies
to better define routes and targets including advanced
refractory neoplasms.

The pseudopterosins constitute a class of diterpene
glycosides isolated from the marine octocoral Pseudopter-
ogorgia elisabethae [72,73,74] (Figure 4). Structurally,
Figure 5. Marine natural products or derivatives thereof in Phase I clinical trials, their bio

organism for Bryostatin 1, Bugula neritina, was courtesy of Koty Sharp, (Ocean Gen

Hemiasterella minor, was reproduced with kind permission from Y. Benayahu and S. Pe

was courtesy of Sy Teisan (Nereus Pharmaceuticals, Inc., San Diego, CA, USA).
they consist of a tricarbocyclic core possessing four stereo-
centers, and a sugar that is appended at either C-9 or C-10
of a catechol subunit that constitutes one of the three
rings. Pseudopterosins A–D were the first of a series that
nownumbers 26members. A search inPubMed (December
2009) indicated that 24 peer-reviewed publications have
appeared since their discovery in 1986. Pseudopterosin A
(PsA), a potent inhibitor of phorbol myristate acetate,
induces topical inflammation in mice [75], stabilizes cell
membranes [76], prevents the release of prostaglandins
and leukotrienes from zymosan-stimulated murine
macrophages [77] and inhibits degranulation of human
polymorphonuclear leukocytes and phagosome formation
in Tetrahymena cells [78]. Treatment with pertussis
toxin prior to pseudopterosin administration blocked
the ability of PsA to inhibit phagocytosis, prompting an
investigation of the role of the pseudopterosins to act upon
G-protein-coupled receptors of the adenosine variety
[79,80]. The C-10 O-methyl ether of PsA displays potent
anti-inflammatory and wound healing properties [81].
Extensive preclinical studies revealed accelerated
wound healing and reepithelialization activity in partial
and full thickness wounds in several animal models
including the diabetic mouse, the Yorkshire and
Harford miniature pigs. The methyl ether also showed
efficacy in healing dichloronitrobenzene induced full
thickness wounds in Hartley guinea pigs. In Phase II
clinical trials, a double-blind study revealed increased
logical source, chemical structures and treatment usage. Photograph of the source

ome Legacy, Ipswich, MA, USA). Photograph of the source organism of E7974,

rkol-Finkel. Photograph of the source organism of marizomib, Salinispora tropica,
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reepithelialization and qualitative improvement during
early wound repair [82].

Marine-derived compounds in Phase I trials

The marine natural products that are currently in Phase I
trials are shown in Figure 5 and include bryostatin 1,
E7974 (hemiasterlin) and marizomib (NPI-0052, salinos-
poramide A). The current status of these compounds is
discussed further in the following section.

Bryostatin 1 G.R. Pettit at Arizona State University
identified the in vivo bioactive agent bryostatin 3 (one of
now 20 variations) from the bryozoan Bugula neritina
(Figure 5). Subsequent research by the National Cancer
Institute at NCI-Frederick gave 18 g of cGMP quality
bryostatin 1 from a 13- ton collection in Californian waters
[83]. Bryostatin 1(and other derivatives) were shown to
bind to the protein kinase C (PKC) isozymes (as do the
tumor-promotingphorbol esters) butwithout tumorpromot-
ing activity [83]. To date, bryostatin 1 has been in 80+
clinical trials for cancer [41], mainly as a single agent
(http://www.clinicaltrials.gov/ct2/results?term=bryostatin).
From late 2007 there were four Phase I and eight Phase II
trials, all combination studies with biologicals or cytotoxins
againstmultiple carcinomas [41]. Currently, bryostatin is in
two Phase I trials and is being assessed as an anti-Alzhei-
mer’s drug (Phase I trial approved) [41]. Supply remains an
issue as synthesis is difficult in the extreme. Of significance
is the identification by Sudek et al. of the gene cluster that
would produce the ‘‘hypothetical precursor, bryostatin 0’’
[84]. If this cluster can be expressed in a heterologous host
(currently the source is anuncultured symbiontCandidatus
endobugula sertula), then production of significant
quantities of base structural material could be possible.

Hemiasterlin (E7974) Hemiasterlin is a cytotoxic tripep-
tide originally isolated from marine sponges [85]. Studies
of structure–activity relationships established that substi-
tutions to the NH2-terminal amino acid yielded analogs
with high in vitro potency, resistance to p-glycoprotein-
mediated efflux and favorable pharmaceutical properties
[86]. The optimal analog was considered to be the N-iso-
propyl-D-pipecolic acid derivative E7974 (Figure 5). The
antimitotic activity of E7974 is mediated via a tubulin-
based mechanism that leads to tumor cell apoptosis [87].
Unlike other tubulin-targeted agents such as taxanes,
vinca alkaloids and eribulin, which bind predominantly
to b-tubulin, E7974 preferentially binds to a-tubulin [87].
In Phase I studies, dose-limiting toxicities were neutrope-
nia or febrile neutropenia, with other adverse events in-
cluding fatigue, constipation, nausea and vomiting
[88,89,90]. Stable disease was observed in several tumor
types, with a partial response in a patient with esophageal
cancer and a PSA response in a patient with prostate
cancer. Hemiasterlin (E7974) is being developed by
Eisai Inc. (http://www.eisai.com/pipeline.asp?ID=173) for
cancer.

Marizomib (NPI-0052, Salinosporamide A) is a natural
product of the marine actinomycete Salinispora tropica
[91,92] (Figure 5). A search in PubMed (December 2009)
using the search term NPI-0052 or salinosporamide A
revealed 68 or 60 publications, respectively. Marizomib
exhibits potent and selective inhibition of the proteasome
262
[91–95], a multicatalytic enzyme complex that is respon-
sible for non-lysosomal protein degradation in cells and
represents a validated target for the treatment of cancer.
Proteasome inhibition occurs via a novel mechanism invol-
ving acylation of the N-terminal catalytic Thr1Og residue
followed by displacement of chloride [93], resulting in
prolonged proteasome inhibition in vitro and in vivo
[92–95]. Translational biology studies clearly demon-
strated single agent activity against solid tumor and hema-
tologic malignancies, including multiple myeloma; further
studies confirmed the potential for using marizomib in
combination with biologics and/or chemotherapeutics
[92,94–96]. These findings provided the basis for Nereus
Pharmaceuticals to initiate several concurrent Phase I
clinical trials in patients with multiple myeloma, lympho-
mas, leukemias and solid tumors. In an important demon-
stration of industrial marine microbiology, clinical trial
supplies of marizomib drug substance are being manufac-
tured through a robust saline fermentation process using
S. tropica strain NPS21184 [92,95]. Marizomib (NPI-0052,
salinosporamide A) is being developed by Nereus Pharma-
ceuticals, Inc. (http://www.nereuspharm.com/) for cancer.

Marine pharmaceuticals: the preclinical pipeline
During the period 1998–2006, the global marine preclinical
pipeline included 592 marine compounds that showed anti-
tumor and cytotoxic activity, and 666 additional chemicals
which demonstrated a variety of pharmacological activities
(i.e. antibacterial, anticoagulant, anti-inflammatory,
antifungal, anthelmintic, antiplatelet, antiprotozoal and
antiviral activities; actions on the cardiovascular, endo-
crine, immune and nervous systems; and other miscella-
neous mechanisms of action). The marine preclinical
pipeline (http://marinepharmacology.midwestern.edu/)
has been systematically reviewed [97,98], and its signifi-
cance has been discussed by leaders in marine natural
products chemistry and pharmacology in a recent commen-
tary [99].

The robustness of the marine pharmaceuticals pipeline
is evident by three compounds (E7389, TZT-1027 and
Yondelis) in Phase III trials, seven compounds in Phase
II trials and three compounds in Phase I trials with
numerous marine natural products being investigated
preclinically as the next possible clinical candidates
[97,98]. Opinions from leaders in the field of marine
natural products all agree that the potential of these
compounds to significantly contribute to the pharmacopeia
is still on the horizon [99]. With the eminent development
of more marine natural products from those in the current
pipeline, the contribution of marine natural products to the
future pharmacopeia seems to be promising. New technol-
ogies and efficient collaborations between academic and
industrial scientists will be essential to ensure the future
success of marine natural products as new and novel
therapeutic entities that can make a significant contri-
bution to the treatment of human disease.
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